
Target fragmentation in DIS: Kinematics, factorization, structures

C. Weiss (JLab), Target fragmentation physics with EIC, CFNS Stony Brook, 29-Sep-2020

Hadron production in high-energy scattering

Soft vs. hard interactions

Target fragmentation region?

Variables

Rapidity η , Feynman x_{F} , light-cone fraction z

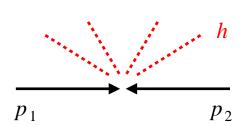
Target fragmentation in QCD

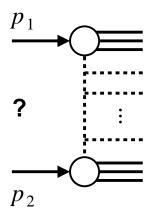
Factorization, conditional PDFs, evolution Domain of applicability?

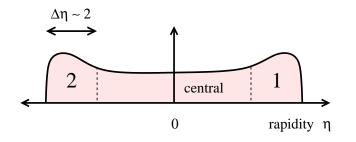
11

• Structures and dynamics

Hadronization dynamics


Spin/flavor effects, transverse momentum


Parton correlations ↔ chiral vacuum


This presentation:

Review concepts
Pose problem
Ask questions

Hadron production: Soft interactions

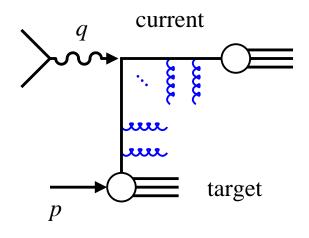
- High-energy scattering $s\gg M_h^2$ Includes hadron-hadron, γ -hadron, γ^* -hadron Hadron production $\langle N_h \rangle \propto \log s$
- Tasks and questions

Explain pattern of hadron production!

Separate "structure of colliding objects" from "interactions"? Relativity, strong interactions...

• Soft interactions: Hadron-hadron scattering

Interactions quasi-local in rapidity


Symmetric situation

Natural separation: Hadron 2 - Central - Hadron 1

Hadron regions: $\Delta \eta \sim$ 1-2, carry quantum numbers

Universality of hadron and central regions

Hadron production: Hard interactions

Hard interactions: DIS

QCD radiation associated with hard process How does it materialize? How does it influence hadron p_T ? How does it change with Q^2, W ?

Hadron structure described in partonic DoF Connection with inclusive cross sections? Universality?

Factorization theorems

Target fragmentation region

Is there a region of hadron production that can naturally be associated with "target structure"?

Non-symmetric situation current-target

Identified in context of factorization theorem \rightarrow later

Quantitative criteria? Domain of applicability?

Collinear frames

$$m{p} \parallel m{q}$$
, along z axis

Class of frames related by longitudinal boosts

$$q^+ = -xp^+ \quad [\text{up to } O(M^2/Q^2)]$$

• Light-cone vector components

$$v^{\pm}=v^0\pm v^z,~m{v}_T$$

Simple boosts $v^{\pm} \rightarrow e^{\pm \bar{\eta}} v^{\pm}$, boost rapidity $\bar{\eta}$

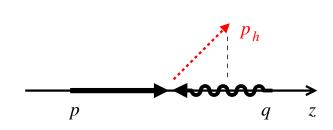
Special cases

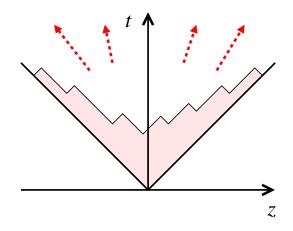
Target rest frame

Center-of-mass frame
$$\gamma^*$$
-target $|{m p}|=|{m q}|$ $p^+=Q/\sqrt{x(1-x)}$

Breit frame
$$q^0 = 0$$

$$p^+ = M$$


$$p^+ = Q/\sqrt{x(1-x)}$$


$$p^+ = Q/x$$

Cover all cases of interest for DIS final states. Transition simply by changing p^{+}

[Event-by-event frames; momenta in detector depend on scattered electron kinematics]

Variables: Hadron rapidity

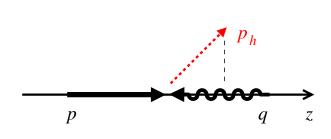
Hadron rapidity

$$\eta_h = \frac{1}{2} \log \frac{p_h^+}{p_h^-} = \frac{1}{2} \log \frac{E_h + p^z}{E_h - p^z}$$

Boost-covariant $\eta_h \to \eta_h + \bar{\eta}$

Rapidity in soft interactions

Soft string fragmentation produces hadrons with constant average density in rapidity


Simple energy evolution: Self-similar

Rapidity in DIS

Used in TMD factorization in current fragmentation region Collins $11 \rightarrow Talk Rogers/Prokudin$

How to define target fragmentation region? $\Delta \eta = \text{const}$? How large? Growing $\propto \log W$?

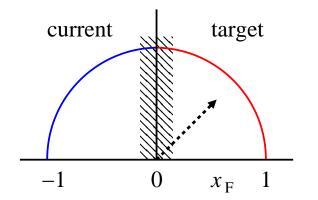
Variables: Feynman x

• Feynman variable $x_{\rm F}$

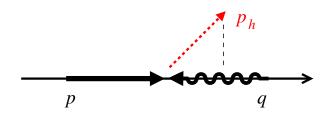
$$x_{
m F}=rac{p_h^z}{p_h^z({
m max})}$$
 in CM frame $|m p|=|m q|$ $-1\leq x_{
m F}\leq 1$

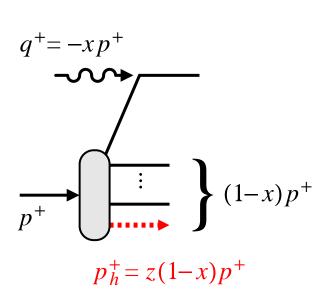
[Here p in positive, q in negative direction]

• $x_{\rm F}$ in soft interactions


Feynman scaling hypothesis: $dN_h = \mathcal{F}(x_{\mathrm{F}}, p_{Th}) \, d^2 p_{Th} dp_h^z / \epsilon_h$

• $x_{\rm F}$ in DIS


Suggests separation based on $x_F < 0, > 0$


Not natural for non-symmetric γ^* -target situation

Target fragmentation region $x_F \sim 1$. Lower limit?

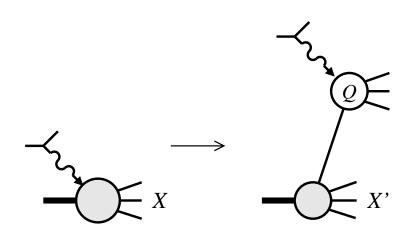
Variables: Hadron light-cone momentum

Light-cone momentum of produced hadron

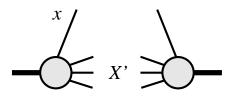
$$z = \frac{p_h^+}{(1-x)p^+} = \frac{\text{hadron}}{\text{remnant}}$$

Virtual photon removes $-xp^+$ from target, remnant system carries $(1-x)p^+$

 $z \approx x_{\rm F}$ simple relation (if not $z, x_F \ll 1$)


Light-cone momentum variable in DIS

Natural variable in parton picture


Target fragmentation region z = O(1)Practical lower limit?

[Note: The variable z used here is **not the same** as the SIDIS energy fraction $z=E_h/\nu$]

Factorization: DIS cross section

$$\sigma = f(x) \times \sigma_{\rm hard}(x, Q^2)$$

$$f(x) = \sum_{X'} \int d^2k_T$$
$$\langle P|a^{\dagger}|X'\rangle\langle X'|a|P\rangle_{k^+=xP^+}$$

[Naive expression: renormalization, gauge invariance...]

Factorization

DIS limit $W^2 \sim Q^2 \gg \mu_{\rm had}^2$

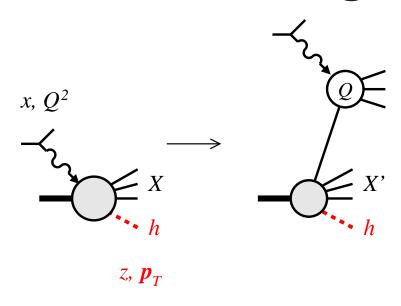
Separate scales $Q^2\gg\mu_{
m had}^2$

 $\sigma_{
m hard}$ calculable in pQCD

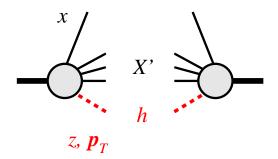
QCD radiation with $\mu_{\mathrm{had}}^2 \lesssim p_T^2 \lesssim Q^2$

• Parton distribution PDF

Light-cone momentum density in target, probabilistic interpretation


QCD radiation: $\log Q^2$ dependence, DGLAP evolution

Universality


PDF indpendent of hard process

Same in $\nu N \to X,$ $NN \to X+$ jets, dileptons

Factorization: Target fragmentation

$$\sigma = f_h(x; \beta, p_T) \times \sigma_{\rm hard}(x, Q^2)$$

$$f_h(x; \beta, p_T) = \sum_{X'} \int d^2k_T$$

 $\langle P|a^{\dagger}|\mathbf{h}X'\rangle\langle \mathbf{h}X'|a|P\rangle_{k^+=xP^+}$

Factorization

Trentadue, Veneziano 94; Collins 98

 $\sigma_{\rm hard}$ same as in inclusive

 Q^2 scaling for fixed $z, p_T \ll Q$ Can be tested experimentally

Conditional parton distribution cPDF Alt. Fracture function

Probability to find hadron with z, p_T after removing parton with x

DGLAP evolution, same as PDF: Increasing active parton resolution does not change its interactions with remnant

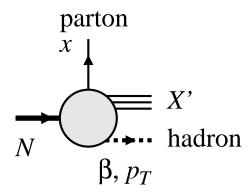
Indpendent of hard process - universal

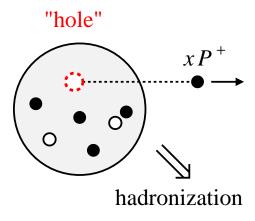
Expresses target structure and hadronization dynamics

Factorization: Region of applicability

Q: In what kinematic domain of z (or x_F , rapidity, ...) can the factorized approximation to conditional DIS factorization be applied?

Theoretical arguments based on space-time evolution, e.g. Breit frame?


Experimental data from HERA, EMC, COMPASS, JLab12?


Talk Avakian

→ "Practical definition" of target fragmentation region!

Question for discussion!

Dynamics: Conditional PDF

cPDF is object in itself

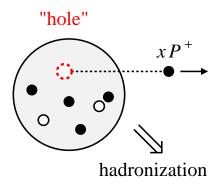
Defined by factorization theorem, universal

Can be extracted from data

→ Talk Ceccopieri

• Use to explore structure and dynamics

Hadronization of nucleon with "hole" in partonic wave function

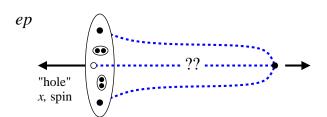

Dynamics of hadronization: Chiral vacuum structure, color connections, . . . ?

Charge/spin/flavor dependence?

Parton correlations?

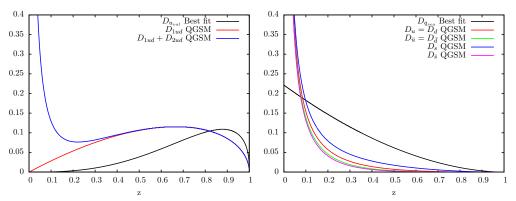
[Mesonic degrees of freedom?]

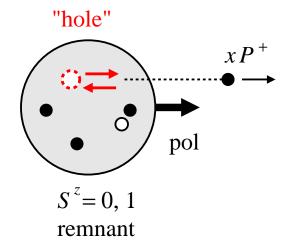
Dynamics: Hadronization of nucleon remnant



• What dynamics governs nucleon fragmentation?

Color forces: Range, mechanism?


Chiral symmetry breaking: $q\bar{q}$ pair condensate, effective spin-flavor interactions?


• String fragmentation model
Andersson et al 80's. Basic template for color neutralization

$$e^+e^- \qquad qar{q} ext{ string}$$
 $e^+N \qquad q(qq) ext{ string}$

 Λ production cPDFs from neutrino and DIS data [Ceccopieri, Mancusi 12]. Strong discrepancy with string-based model [Kaidalov Piskounova]

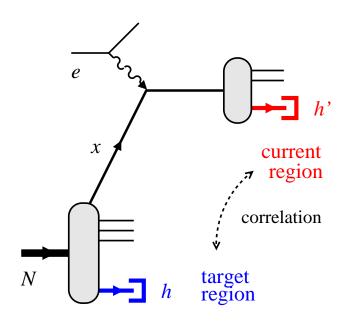
Dynamics: Spin dependence

Polarized DIS leaves remnant system with definite spin

Study spin dependence of hadronization at fixed \boldsymbol{x} and \boldsymbol{z}

Observables sensitive to remnant spin

 Δ -N production ratio Strikman 13

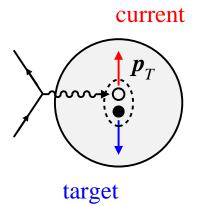

Polarized Λ production

 Azimuthal asymmetries in target fragmentation with beam/target spin Anselmino, Barone, Kotzinian 11

$$\frac{d^{5}\sigma}{dx \ dQ^{2} \ dz_{h} \ dp_{hT} \ d\phi_{h}} = [...] + \sum_{n} [...] \cos n\phi_{h} + \sum_{m} [...] \sin m\phi_{h}$$

T-even and T-odd structures, cf. SIDIS in current fragmentation region

Dynamics: Correlations



 Control charge/flavor of removed quark through current fragmentation hadrons

Singlet-nonsinglet separation with $\pi^+ \pm \pi^-$

Antiquarks with current antiprotons (?)

Strangeness with K^+, K^-

• Beyond collinear: p_T dependent correlations

Sea quarks in correlated pairs of size $ho_{
m chiral} \ll 1$ fm

Back-to-back correlations between current and target hadrons Schweitzer, Strikman, Weiss $11 \rightarrow Talk$ Schweitzer

Dynamical origin of intrinsic p_T ?

Target fragmentation region in DIS:

Fragmentation regions in DIS not naturally symmetric as in soft interactions

Target fragmentation region identified in several variables: rapidity, x_F , light-cone fraction

Target fragmentation region defined parametrically in factorization theorem

What are the numerical boundaries? Need dynamical arguments. . .

Conditional PDFs:

Defined through factorization theorem, universal = process-independent

Leading-twist objects, DGLAP evolution = same as PDFs

Contain rich information about nucleon structure and hadronization dynamics

Need realistic model-building to guide studies. . .